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A systematic study of the density and temperature dependence of bridge functions has been carried out using
molecular dynamics simulation studies in one-component Lennard-Jones fluids. In deriving the liquid structure,
approximate closures are generally used in integral equation theories of liquids to obtain static density corre-
lations. In the present work, we have directly compared the simulated bridge function to two such commonly
used closures, viz., hybrid mean spherical approximation �HMSA� �J. Chem. Phys. 84, 2336 �1986�� and
Duh-Henderson �J. Chem. Phys. 104, 6742 �1996�� closures with thermodynamic parameters varying from the
normal liquid to the supercritical fluid phase far from and near the critical point. In the normal liquid region,
both closures show a qualitative agreement with the simulated bridge function, although the extent of corre-
lation at distances ��r�2.5� is generally underestimated. A similar behavior is obtained in supercritical
fluids far from the critical point where critical fluctuations are no longer important. In contrast, significant
deviations are observed in the bridge functions in supercritical fluids near the critical point even at densities as
small as 25% or 50% of the critical density. Such behavior appears to have resulted from competing contri-
butions to the bridge function from decreasing indirect correlations and small yet significant cavity correlations
persistent even at very low densities.
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I. INTRODUCTION

The structure of any homogeneous and isotropic liquid is
generally described in terms of the radial distribution func-
tion, g�r�, or the structure factor, S�k� �1,2�. Several methods
have been proposed to calculate the structure of simple liq-
uids, and extensions to molecular as well as multicomponent
fluids have been extensively investigated �2�. There has been
a recent surge of interest in liquid structure under varying
conditions of temperature T and pressure P �or density ��
with the emergence of supercritical liquids as a special class
of solvents �3–5�. Liquids under supercritical conditions
show unique properties such as �i� enhancement of solvent
density around the solute �6–9�, �ii� better solvation of or-
ganic solutes and high oxidation efficiencies in supercritical
water �10�, �iii� enhancement of diffusion coefficient and
thermal conductivity �4�, and �iv� increase in viscosity in a
small range of densities and temperatures near the critical
point �4�. Supercritical fluids �SCFs� have found vast appli-
cations as solvents in chemical reactions ranging from envi-
ronmentally benign synthesis to several extraction processes,
promotion of alternative reaction products, mechanisms, and
rates �11�. An accurate understanding of the structure of su-
percritical fluids is a necessary prerequisite for detailed
analysis of these novel properties. Although the structure of a
normal liquid is fairly well understood, the effect of large
variations in T and P �or �� especially in SCFs still remains
an open question �3�.

The goal of the present article is to investigate the static
structure of simple liquids with variations in temperature T

and density �. The liquid structure at a given thermodynamic
state point may be obtained by using molecular dynamics or
Monte Carlo simulation studies �12,13�. However, even with
the current availability of computer resources, it may not be
computationally possible to explore the structure spanning
all relevant regions of the phase diagram. On the other hand,
it is well known that the integral equation theories �IETs� of
liquid structure and thermodynamics �14� provide a useful
alternative to simulation, especially when the structure is in-
vestigated for a wide range of T and P �or �� or if the system
poses ergodicity problems. Excluding a small region near the
critical point, IETs accurately reproduce the simulated corre-
lations in single phase regions and can also predict most of
the liquid-liquid or liquid-gas coexistence lines in several
systems �14�. In the region of low-density characteristic of
supercritical solvents, the IETs are expected to provide an
accurate description of correlations and, hence, appear to of-
fer a convenient route to obtaining the structure in the super-
critical region.

Within the framework of IETs, the static correlations in
homogeneous isotropic liquids are described in terms of the
total correlation function, h�r�=g�r�−1, and the direct corre-
lation function, c�r�, by solving the Ornstein-Zernike �OZ�
equation

h�r� = c�r� + �0� dr�c��r − r���h�r�� �1�

in conjunction with an approximate closure relation. �0 is the
average number density of the liquid. h�r� is related to the
interparticle pair potential ��r� by the following exact rela-
tion �1�:
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h�r� + 1 = exp�− ���r� + ��r� + B�r�� , �2�

where ��r�=h�r�−c�r� is known as the indirect correlation
function. As usual, �= �kBT�−1, with kB and T as the Boltz-
mann constant and absolute temperature, respectively. In Eq.
�2�, B�r� represents the bridge function that is a sum of an
infinite number of integrals involving products, in an increas-
ing order, of correlation functions and simple functions of
the potential �14,15�. This series cannot be converted to any
usable analytical formula, and in actual practice B�r� has to
be approximated by means of additional semiempirical ap-
proximations. This is subsequently used to close the numeri-
cal solution of Eqs. �1� and �2�. However, the approximate
closures used in IETs have been developed and tested with
the aim of predicting the radial distribution function accu-
rately in the region of high to intermediate densities. Appli-
cability of these closures in the supercritical fluids needs to
be addressed carefully before IETs are used to probe liquid
structure at low, gaslike densities in the supercritical regions.
In this article, our aim is to calculate the bridge function,
B�r�, a key input to IETs, directly from molecular dynamics
simulation of supercritical Lennard-Jones fluids. Closures
which accurately predict g�r� in the normal liquid phase of
such systems are known and can be compared to the simu-
lated bridge function to assess their applicability in the su-
percritical region.

Information regarding B�r� may be derived, for example,
from a series in powers of the density �16�, from implemen-
tation of consistency of various thermodynamic properties
�17–19�. In this article, we shall focus on the approximate
functional forms that have been used to model B�r� in vari-
ous IETs. At the simplest level, B�r� can be set equal to zero
as in the hypernetted chain �HNC� approximation. Alterna-
tively, a local dependence of bridge function on the indirect
correlation function ��r� may be assumed as B=B���. For
example, accurate structure and thermodynamics are pre-
dicted in hard-sphere fluids by using the semiempirical
modified Verlet �MV� closure �20� given by

B�r� =
− �2

2�1 + 0.8��
. �3�

In the case of Lennard-Jones fluids, the pair potential is ex-
pressed in terms of energy parameter � and particle diameter
� as

��r� = − 4����

r
	12

− ��

r
	6
 . �4�

It has been shown �21� that in such systems, a Weeks-
Chandler-Andersen �WCA� partitioning �1� of the potential
��r� may be carried out into a soft-core repulsive part, �R�r�,
and an attractive part, �A�r�, by setting

�R�r� = ��r� − ��rm�, r � rm,

=0, r 	 rm,

�A�r� = ��rm�, r � rm,

=��r�, r 	 rm, �5�

where ��r� exhibits a minimum at r=rm. This is utlized, for
example, in the hybrid mean spherical approximation
�HMSA� where B�r� is given by �21�

B�r� = ln�1 +
exp�f�r����r� − ��A�r��� − 1

f�r� 
 − ��r� + �A�r�

�6�

with a Roger-Young ‘switching’ function f�r�=1−exp�−
r�.
The parameter 
 can be varied to impose thermodynamic
consistency of the solution. After analyzing the density de-
pendence of the bridge function, Duh and Haymet �22� in-
troduced a semiphenomenological density dependence in the
attractive part of the potential that was later modified by Duh
and Henderson �23�. When applied to Lennard-Jones fluids,
�A�r� takes up the following form �23�:

�A�r� = − 4���

r
	6

exp�−
1

�*��

r
	6�*
 . �7�

Here, �*=�0�3 is the reduced density of the liquid. It is also
assumed that B�r�B�s�, where s�r�=��r�−��A�r� is the
indirect correlation function renormalized in terms of �A�r�.
The resultant expression for the bridge function is free from
any adjustable parameter and is given by

B�s� =
− s2

2�1 + �5s + 11

7s + 9
	s
 , s � 0,

=−
1

2
s2, s � 0. �8�

In the rest of the article, we shall refer to the above equation
as Duh-Henderson �DH� closure. The application of HMSA
and DH closures in predicting structure, thermodynamics,
and vapor-liquid phase equilibria is well documented
�14,23�. Several other approximations have been used to
model B�r� in Lennard-Jones �LJ� fluids �19,24�, soft sphere
fluids �25�, fused sphere dimeric fluids �26�, and several
other complex systems �27�. In this article, we shall focus on
the applicability of HMSA and DH closures to one-
component LJ fluids in the supercritical region.

The accuracy of the approximate closures is usually de-
termined by solving the IET to obtain g�r� and subsequently
comparing it to the results of Monte Carlo or molecular dy-
namics simulation �21–28�. However, a direct calculation of
the bridge function and its dependence on the thermody-
namic parameters are less frequently investigated. As we
shall discuss later, extraction of the bridge function from
molecular dynamics or Monte Carlo simulations may require
repeated Fourier transformation of correlations to and from
the wave vector �k� space. An accurate description of the
long-range part of g�r� is a necessary prerequisite for this
purpose. Several attempts were made earlier to model the
large-r part of g�r� �29–31� and ways of elimination of finite-
size effects prescribed �32�. In the high-density liquid region,
it is found �28� that there exists a highly negative region for

T. R. KUNOR AND S. TARAPHDER PHYSICAL REVIEW E 72, 031201 �2005�

031201-2



r�1.2� followed by an oscillatory decay at the large r rem-
nant of the long-range oscillations of g�r�. Recently, a com-
prehensive analysis of closure relations in binary mixtures of
hard-sphere fluids from Monte Carlo simulation studies �33�
reveals a breakdown of the assumption of local dependency
of B�r� on ��r� either in the region around the first and sec-
ond neighbor shell or inside the hard core, depending on the
system studied. In LJ fluids, the most extensive study of the
density and temperature dependence of B�r� has been pre-
sented by Llano-Restrepo and Chapman �34�, who investi-
gated a range of liquidlike densities from the triple point to
supercritical conditions. The overall behavior of B�r� was
found to depend strongly on the density of the system. With
decreasing density, the negative dip in the core region rapidly
becomes shallow and the long-range part structureless after
r	1.2�. However, the lowest supercritical density investi-
gated in this work is �*=0.4 at T*=1.5. In an earlier IET
study using second order Percus-Yevick closure �35�, the be-
havior of B�r� of a Lennard-Jones fluid was investigated at
densities as low as 0.2. However, the predicted lack of struc-
ture in B�r� could not be compared directly with simulations.
In the present article, we would like to investigate the nature
of the bridge function in one-component Lennard-Jones fluid
in the supercritical region with densities �* less than the criti-
cal density, �c

*=0.29, at temperatures T near and substantially
higher than the critical temperature, Tc

*=1.31.
As the critical point of a fluid is approached, the isother-

mal compressibility �T diverges as T tends to Tc �36�. Since
this divergence occurs smoothly ��T��1− t�−��, where
t=T /Tc and ��=1.1–1.4�, there exists a region in the phase
diagram for which �T is large and �T	�T

0, the compressibil-
ity of an ideal gas. A large compressibility near a narrow
region around the critical point implies that in this region,
large density fluctuations may be sustained without any con-
siderable loss of free energy creating patches of high and low
density in the liquid. In spite of the ongoing effort both in
theoretical and experimental studies, understanding the struc-
ture of the fluid in this compressible regime still remains an
open problem. It may be noted that in the compressible re-
gion near the critical point, it may become difficult to equili-
brate the simulated system because of large volume fluctua-
tions �13�. On the other hand, the presence of substantial
density inhomogeneity requires the pair correlations to be
described in terms of g�2��r1 ,r2 ,12�, where 12 is the angle
between the vectors r1 and r2 �37�. Applications of IETs to
derive the structure of simple fluids in the vicinity of the
critical point have been investigated where the homegeneity
of B�r� is still maintained �38�. In a recent study of attractive
supercritical solutions �39�, inhomogeneous OZ equations
were solved coupled to an inhomogeneous Percus-Yevick
closure involving c(r1 ,r2 ,cos�12�). However, the accuracy
of such descriptions needs to be investigated further in detail.
Interestingly, insertion of a solute in a supercritical solvent is
found to bring out important differences between integral
equations �40�. It may be noted that in this article, we shall
concentrate primarily on the structure of supercritical LJ
fluid away from the critical point assuming the validity of
Eq. �1�.

We shall next present the method of extraction of the
bridge function, B�r�, from equilibrated trajectories of a mo-

lecular dynamics simulation. The structure of one-
component Lennard-Jones �LJ� fluid is determined in both
the normal and supercritical regions and the static correla-
tions compared with those predicted by HMSA and DH. It is
found that in the subcritical high-density liquid phase and in
supercritical fluids far from the critical point, there is a quali-
tative overall agreement between B�r� obtained from simula-
tion and those obtained from HMSA and DH closures. At
intermediate distances, the correlation predicted by the simu-
lation at the level of bridge function is found to be higher
than those used in HMSA or DH. In the supercritical region
near the critical point, both closures predict a small but
smooth change of B�r� from small negative values to zero
based on an assumption of homogeneity of the liquid. How-
ever, the simulated bridge function seems to provide a quali-
tatively different behavior in the core region where it starts
with a small positive value rapidly changing into near zero
values at distances r��. This behavior is observed even at
densities as small as �c /2 and �c /4, where the critical fluc-
tuations are normally expected to be of less significance.
These deviations are analyzed in terms of the cavity correla-
tion function, y�r�=g�r�exp����r��, that is related to the
bridge function as

B�r� = ln y�r� − ��r� . �9�

The relative contributions of y�r� and ��r� to the overall
dependence of B�r� on the density of the system are dis-
cussed as possible indication of density inhomogeneity at
these state points.

The rest of the article is organized as follows. In Sec. II,
we outline the method adopted to extract the bridge function
and cavity correlation function from molecular dynamics
simulation. The results are presented in Sec. III, and Sec. IV
concludes with a brief discussion.

II. METHODOLOGY

As mentioned in the Introduction, we have employed the
molecular dynamics simulation method to study the structure
of LJ fluid in normal and supercritical regions. Ideally, equi-
librium properties of any system may be obtained from
Monte Carlo simulation studies. However, we aim at extend-
ing later the results of the present study to investigate the
correlation between equilibrium structure and the system dy-
namics. Therefore, molecular dynamics was chosen to be the
suitable method. The radial distribution function was calcu-
lated by sampling the equilibrated trajectories of particles
obtained in a NVE molecular dynamics simulation. The ra-
dial distribution function thus simulated may be used to cal-
culate the bridge function in the following way �30,34�. First,
g�r� is Fourier-transformed to obtain the structure factor,
S�k�, as �1�

S�k� = 1 + 4��0�
0

�

drr2�g�r� − 1�
sin�kr�

kr
, �10�

which is related to the Fourier transform of direct correlation
function, c̃�k�, as
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�0c̃�k� = 1 −
1

S�k�
. �11�

The next step involves calculation of �̃�k�, the indirect cor-
relation function in the Fourier space, using the following
expression:

�̃�k� =
�0�c̃�k��2

1 − �0c̃�k�
. �12�

Fourier inversion of �̃�k� yields ��r�, which is finally used to
calculate the bridge function as

B�r� = ln g�r� + ���r� − ��r� . �13�

As mentioned earlier, the accuracy of the bridge function
thus extracted depends on the range of r over which g�r� has
been probed. In earlier studies, the long-range part of g�r�
used to be modeled with a suitable ansatz �30�. However,
with the advent of large-scale simulation studies with box-
lengths larger than 30 Å, such approximate treatments may
not be necessary any more. In all the systems investigated
here, the conditions were so chosen that g�r� attained its
limiting value of unity �with very small fluctuations around
it� well within the maximum distances probed. However, in
spite of using large systems, it may be difficult to obtain
accurate enough statistics at large values of r. In addition,
even small errors in sampling of large distances may give
rise to a substantial accumulation of error in estimating S�k�
in the limit k→0. In practice, we find that estimation of S�k�
through g�r� may give relatively large errors in S�k→0� es-
pecially in low-density supercritical regimes where the large
distances are anyway sparsely populated. In the present
work, we have extensively compared the wave-vector depen-
dence of S�k� calculated from g�r� and that obtained by di-
rect sampling in the k space �41�. The latter is found to
provide a more accurate estimate of S�k� in the small wave-
vector limit while both the methods afford nearly indistin-
guishable values at intermediate to large values of k.

It should also be noted that it is not possible to estimate
B�r� within the core region �that is, r��� using Eq. �13� as
g�r� is zero in this range. Alternatively, one may use Eq. �9�
to evaluate the bridge function from the cavity correlation
function y�r�. The latter may be estimated either using Hend-
erson’s equation �42� or employing the direct simulation
method of Torrie and Patey �43�. In the present work, we
have used Henderson’s method, which is known to be accu-
rate at small r �33,34�. In this method, for a system com-
prised of N particles, the cavity function can be obtained
from the following expression �42�:

y�r12� =
exp���res�

�N� �N exp�− ��
j	2

n+1

��r1j�
�
�,V,T

,

�14�

where �res corresponds to the residual chemical potential and
the angular brackets represent the grand canonical ensemble
average. The above expression can be exactly extended to
the canonical ensemble �33� where N remains constant.
Therefore, calculation of the cavity correlation function,

y�r12�, amounts to obtaining the average probability of plac-
ing a hypothetical test particle �labeled as 1� at a distance r12
from any of the N particles labeled as 2. Although computa-
tion of this probability is practically free in a NVT Monte
Carlo simulation, it can also be evaluated without much
computational cost from the equilibrium trajectories gener-
ated in MD simulation.

III. RESULTS AND DISCUSSION

We have carried out both NVE and NVT molecular dy-
namics �MD� simulations using 864, 5000, and 10000 par-
ticles. Periodic boundary conditions are employed to elimi-
nate surface effects. The Verlet neighbor list �44� has been
used to optimize the efficiency of the program. In the NVE
simulation, we have used the velocity version of the Verlet
algorithm to integrate the equation of motion with a time
step equal to 1 fs. The system was equilibrated over 105

steps. The radial distribution function g�r� has been calcu-
lated by sampling the equilibrated trajectories at an interval
of 50 steps during the production run spanning 2�105 steps.
The NVE simulation results of LJ fluids have been checked
for accuracy against corresponding NVT simulation results
of fluids in normal and supercritical regions. The simulation
package DL�POLY �45� has been used to generate the trajec-
tories in NVT ensemble using the Nosé-Hoover thermostat
�46�. It is found that both NVE and NVT provide nearly
identical estimates of g�r�. Efficient fast Fourier transform
routines have been used to calculate S�k� directly from g�r�,
and S�k→0� is corrected using the direct sampling method in
the wave-vector space. ��r� is subsequently calculated by
Fourier inversion of S�k�. No marked change was obtained
by increasing the number of particles from 5000 to 10000,
and thus in the rest of the analysis we report results of our
simulation using 5000 particles only.

Since Henderson’s method is exact in the canonical en-
semble, the equilibrated trajectories from our NVT simula-
tion can be used as input to calculate the cavity correlation
function, y�r�, at small values of r. We have also used the
equilibrium trajectories from NVE simulation to obtain an
approximate estimate of y�r� and hence B�r� at small values
of r. The canonical ensemble average required to obtain y�r�
has been carefully calculated by selecting at least 10 uncor-
related coordinate sets along equilibrium trajectories. For
each coordinate set, the test particle was placed at 16 differ-
ent equally distributed orientations on a grid near each of the
5000 particles present in the system and the cavity correla-
tion was calculated by carrying out a suitable normalization.
In both cases, it is well known that estimates of y�r� become
statistically unreliable at distances r��, and hence B�r� ob-
tained directly from MD is used to represent B�r� at larger
distances. B�r� within the core derived from Henderson’s
method is found to extend smoothly and continuously to B�r�
outside the core calculated from the MD simulation.

To facilitate a direct comparison to the simulated bridge
function, the approximate functional forms of B�r� as in
HMSA or DH have been evaluated using the simulated ��r�
as input. In evaluating the HMSA bridge function, the ther-
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modynamic consistency parameter 
 is obtained by solving
the OZ equation with HMSA closure. This value has also
been obtained from a fitting equation proposed recently by
studying the density and temperature dependence of 
 �47�.

NVE simulation of simple LJ fluids has been extensively
reported in the literature, and here we report only the essen-
tial details. The length is scaled by the particle diameter �
and energy by the LJ energy parameter �. The thermody-
namic state of the system is characterized accordingly by the
reduced density, �*=�0�3, and the reduced temperature,
T*=kBT /�. Choosing the mass m, diameter �, and energy
parameter � to be equal to those characteristic of Ar, time t is
found to be scaled by �=�m�2 /��2 ps. We have investi-
gated the structure of the Lennard-Jones fluid at the follow-
ing regions �48�: �i� the normal liquid of high density, �ii� the
supercritical fluid far from critical point, and �iii� the super-
critical fluid at densities �c /2 and �c /4 at a constant tempera-
ture near Tc. Details of the parameters used are summarized
in Table I. As mentioned earlier, we have performed both
NVE and NVT simulations at these state points. In the case
of NVE results, the temperature reported in the table is an
average value calculated from the equilibrated kinetic en-
ergy. The equations of motion were integrated using a time
step of 1 fs. Although it is definitely possible to use a longer
time step in “normal” liquids, the upper limit is found to be
about 5 fs in the low-density limit.

A. Normal LJ liquid

In this section, we present the simulated structure of one-
component LJ fluid in the homogeneous liquid phase �state I
of Table I�. The indirect correlation function, ��r�, and the
cavity correlation function, y�r�, are derived from both NVE
and NVT MD simulations and the results are presented in
Fig. 1. Identical estimates of both of these quantities are
obtained, which emphasizes the accuracy of our calculation.
The resultant variation of B�r� is shown in Fig. 2. It is found
that in the subcritical high-density liquid phase, either of the
two methods can be used to obtain quantitatively similar
predictions of the bridge function. In Fig. 3, B�r� obtained
from NVE simulation has been compared to HMSA and DH
closures. As mentioned earlier, we have used the simulated
��r� as input to calculate the approximate closures. To evalu-
ate B�r� using HMSA �Eq. �6��, the value of 
 is set equal to
0.1272, which produces a thermodynamically consistent so-
lution of the coupled OZ equation at the given state point.
Under the given scheme, it is not possible to evaluate nu-
merically the HMSA closure in an intermediate region where
�1/ f�r��(exp�f�r����r�−��A�r���−1)�−1. The DH closure
produces a better qualitative agreement with the simulated

TABLE I. The states studied in one-component LJ fluid. State I
corresponds to the “normal” liquid while state II is in the supercriti-
cal region far away from the critical point. States III and IV lie in
the low-density supercritical region near the critical point located at
�c

*=0.29 and Tc
*=1.31.

State Density, �* Temperature T*

I 0.8442 1.04

II 0.4221 3.95

III 0.1450 1.5

IV 0.0725 1.5

FIG. 1. The indirect correlation function, ��r�, and log of the
cavity correlation function, ln y�r�, in LJ liquid at T*=1.04 and
�*=0.8442 �state I of Table I�. ��r� obtained using NVE and NVT
simulations are represented by open circles and crosses, respec-
tively. ln y�r� calculated using Henderson’s method �42� is shown
using solid lines �NVE MD� and triangles �NVT MD�.

FIG. 2. Comparison of the bridge function, B�r�, in the subcriti-
cal high-density liquid �state I� from NVE and NVT MD simula-
tion. For distances smaller than �, Henderson’s method �42� has
been employed to evaluate the bridge function.

FIG. 3. Comparison of simulated bridge function �NVE, solid
line� of LJ liquid in state I with the approximate IET closures, DH
�open circle�, and HMSA �triangle�. The inset highlights stronger
correlation predicted by NVE MD �solid line� and NVT MD ��� in
comparison to DH.
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bridge function, although none of the closures seem to rep-
resent the short-range behavior accurately. The other impor-
tant difference appears at around r�1.2�. As emphasized in
the inset of Fig. 3, larger correlations are predicted by both
NVE and NVT simulation results.

B. Supercritical fluid far from the critical point at high
temperatures

In this region, described typically by the state point II in
Table I, it is expected that with the decay of critical fluctua-
tions, the system would be more or less homogeneous.
Therefore, the positional correlations are supposed to re-
semble that of a low-density fluid or a gas. The equilibration
in this case was done in two stages, initially with a time step
of 0.5 fs and then with a time step of 1 fs over 5�105 time
steps. The production run for each set of initial configuration
was carried out over 2�105 steps. The results of our simu-
lation are summarized in Figs. 4 and 5. Once again, we have
carried out a consistency check using both NVE and NVT
simulation results. For the HMSA closure, 
=0.534. The

state point chosen here lies very close to the Boyle tempera-
ture of the fluid �40� and a marked reduction of correlations
is expected, as shown in Fig. 4. However, the decrease in
��r� appears to be much more than that observed in ln y�r�,
which can probably be attributed to the slow variation of the
logarithmic function with variation in density. The overall
variation of the bridge function predicted using the NVT
simulation qualitatively matches well with the IET closures.

C. Supercritical fluid at densities �c /2 and �c /4 near the
critical temperature

We have investigated the structure in the low-density su-
percritical region near the critical temperature at T*=1.5
�states III and IV, see Table I�. It is found that decreasing
density from �c to �c /4 results in a marginal increase in the
peak height of g�r� in the region r�� from the trajectories
of NVE MD simulation. However, as shown in Fig. 6, no
such anomaly is observed in the results predicted by NVT
MD simulation and, correspondingly, a marginally larger
value of ��r� is obtained at �c /2 in comparison to ��r� at
�c /4 �Fig. 7�. Otherwise, as expected, ��r� assumes small
values and smoothly decays to zero at r�3� �Fig. 7�. In
Figs. 8 and 9, ��r� and ln y�r� have been plotted as a function

FIG. 4. Indirect correlation function, ��r�, and log of cavity
correlation function, ln y�r�, at state II with T*=3.95 and
�*=0.4221. The estimate of ln y�r� from NVE �solid line� is com-
pared to that obtained from NVT �triangles�. ��r� is also obtained
from both NVE and NVT MD simulations �square� and are shown
by circles and crosses, respectively.

FIG. 5. Comparison of simulated bridge function �from NVT
MD, solid line� in LJ SCF far from the critical point at state II with
IET closures HMSA �triangle� and DH �open circle�. As in Fig. 3,
the inset highlights the difference in correlation predicted at inter-
mediate distances.

FIG. 6. Comparison of first peak heights of the radial distribu-
tion function, g�r�, at T*=1.5 and supercritical densities �c /2
�squares� and �c /4 �triangles� obtained from NVT MD simulation.

FIG. 7. The indirect correlation function, ��r�, of one-
component LJ fluid obtained from NVT MD simulation at T*=1.5
and supercritical densities �c /2 �solid line� and �c /4 �open circles�
corresponding to states III and IV of Table I, respectively.
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of r for small values of r at these two densities. Our consis-
tency checks show that both NVE and NVT simulations pro-
vide nearly identical estimates of ln y�r� and ��r�. We have
subsequently used the bridge functions obtained from NVT
simulation results at �c /2 and �c /4 for comparison with the
approximate closures, and the results are shown in Figs. 10
and 11, respectively. We have used 
=2.8 and 4.0 to obtain
the HMSA closure at states III and IV, respectively. There is
a marked qualitative change in the behavior of B�r� in com-
parison to the normal liquids �cf. Fig. 2�. At distances smaller
than � ,B�r� no longer exhibits a negative region. This may
be understood in terms of the competing contributions of the
cavity correlation and the indirect correlation function. With
decreasing density, both the correlations have been reduced
with a slower variation of ln y�r� in comparison to ��r�.
Therefore, a small yet significant effect of cavity correlation
persists even at densities as low as �c /4 in spite of the indi-
rect correlations becoming smaller in magnitude. At longer
distances, B�r� is essentially zero, as expected for such low-
density systems. The rapid change in the crossover region
�r��� is dominated primarily by ���r� as both ��r� and
g�r� have small values in this region. The simulated bridge
functions thus exhibit significant deviations from the predic-
tions of both HMSA and DH closures in the low-density
supercritical region. We have also shown the Duh-Haymet

plots to investigate the inter-relationship between the bridge
function and the indirect correlation function ��r� or the
renormalized indirect correlation function, s�r�, in Fig. 12.
Qualitatively similar correlations are predicted by the simu-
lated curve and the IET closures both in the homogeneous
high-density liquid phase �panel d� as well as in the low-
density supercritical fluid far from the critical point �panel c�.
However, the correlations near the critical point at �c /4 and
�c /2 once again emphasize the breakdown of the assumption
of local dependence of B�r� on � or s.

IV. CONCLUSION

In this article, we have presented a molecular dynamics
study of the density and temperature dependence of the
bridge function in low-density supercritical Lennard-Jones
fluids. The results have been compared to approximate clo-
sures used in the integral equation theories of liquids. It is
found that both HMSA and DH closures provide a qualita-
tively accurate description of the bridge function in subcriti-
cal high density liquids as well as in supercritical fluids far
from the critical point. The applicability of these approxi-
mate closures to describe the fluid structure hinges mainly on

FIG. 8. The indirect correlation function, ��r�, and logarithm of
the cavity correlation function, ln y�r�, in the supercritical LJ fluid
at T*=1.5 and �*=�c

* /2 from NVE and NVT MD.

FIG. 9. The indirect correlation function, ��r�, and logarithm of
the cavity correlation function, y�r�, at T*=1.5 and �*=�c

* /4 from
NVE and NVT MD.

FIG. 10. Comparison of simulated bridge function, B�r�, in the
supercritical LJ fluid at T*=1.5 and �*=�c

* /2 with IET closures. The
symbols used are the same as in Fig. 3. B�r� shown has been ob-
tained from NVT MD simulation.

FIG. 11. Comparison of simulated bridge function in the super-
critical LJ fluid at T*=1.5 and �*=�c

* /4 with IET closures. The
symbols used are the same as in Fig. 3. B�r� shown has been ob-
tained from NVT MD simulation.
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the assumption of homogeneity and isotropy of the system
under consideration. An important outcome of the present
study is the behavior of cavity correlations at the low-density
limit. In this limit, it is expected that cavity correlations
should decrease, reflecting the corresponding reduction in
direct and indirect correlations. However, at supercritical
temperatures close to the critical point, the cavity correlation
takes up values that would be otherwise expected at higher
densities. This may be attributed to an augmented density in
the first neighbor shell of any tagged particle �6,49� in a
supercritical fluid. It is found to result in a qualitative change
in the overall behavior of the bridge function at small dis-
tances even if B�r� remains practically structureless in the
region outside the core. Moreover, the local dependence of
B�r� on ��r� or s�r� is also altered as shown by regions of
nonmonotonic variation of B�r� in Figs. 12�a� and 12�b� at
states III and IV. Assumption of such a dependence usually
plays a key role in the calculation of properties such as

chemical potential �50�, which is in turn used in predicting
phase equilibria �14,51�.

If we focus our attention on the region in the phase dia-
gram near the critical point, it is found that the assumption of
a homogeneous, isotropic behavior may lead to erroneous
estimates of the correlation. The extent of such an error has
been highlighted from our studies of B�r� in supercritical
fluid at densities substantially lower than critical density
along an isotherm near the critical point. An earlier study of
the structure and dynamics of the supercritical fluids �52�
indicates the formation of high-temperature clusters, result-
ing in an inhomogeneous distribution of higher- and lower-
density patches throughout the liquid. The dynamics of clus-
ter formation and breaking take place in a relatively fast time
scale of about 1 ps �52�. Analysis of our simulated trajecto-
ries at states III and IV reveals the existence of high-
temperature clusters similar to those observed by Yoshii et
al. �52�. It therefore appears relevent to extend the IET clo-
sures to describe the structural correlations in terms of
h�r�1 ,r�2� instead. Inhomogeneous PY closure �53� has been
recently shown to provide excellent agreement at the level of
solute-solvent radial distribution function for a dilute
Yukawa solute in supercritical LJ solvent very close to the
critical point. However, the inherent limitations associated
with PY closures are well documented �14�. Therefore, fur-
ther investigations are required to address the suitability of
extending an existing approximate closure to the inhomoge-
neous region near the critical point. As it may be a nontrivial
exercise to extract the bridge function from simulation in
such inhomogeneous systems, a direct test for an appropriate
closure still remains an open problem.
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